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How to understand molecular structures and their properties?
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Quantum mechanics
* Molecular structures are difficult to determine.
=> Challenging to visualize.
=> Complex arrangements of atoms and bonds.

=> Exhibit dynamic behavior. (e.g., ps scale)

Classical mechanics



How to understand molecular structures and their properties?

Reactions between
ethylene (C,H,) molecules

Microscopic

Quantum mechanics



How to understand molecular structures and their properties?
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Quantum Chemical Methods
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Quantum chemical computations
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Quantum Chemical Methods

Computer ‘

\simulations

Computer —

<

5

....................

Energy

THFLICIT REALIFLONTY (-0 3535
I 1

\\

Quantum chemical methods can determine:
Develop theory

Reaction intermediates | Reaction barriers | Rate

constants | Branching ratios | Tunneling effects |
Quantum chemical computations Binding energies | Diffusion barrier | Desorption

energies | Spectroscopy | Many more ... 7



Quantum Chemical Methods
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Develop theory

Quantum chemical computations

The Schrodinger equation governs the
behavior of quantum systems but is too
complex to solve exactly for most real-

world problems.



Quantum Chemical Methods

* The Schrédinger equation governs the
= behavior of quantum systems but is too
complex to solve exactly for most real-

Accuracy world problems.
&

© Configuration Interaction

(quadruples) (CISDTQ) * Density Functional Theory (DFT) is a

powerful approximation

ity funct |
Density funcliona O Coupled-Cluster (CCSD(T))

theory (DFT)
O © Configuration Interaction (doubles) (CISD) * DFT replaces the many-electron
4 wavefunction with the electron density,

Q Maller-Plesset 2nd order (MP2 . g . .
P significantly reducing computational cost.

© Hartree-Fock (HF)

- »  Computational cost ) .. . .
M3 ONE NS NS N7 ONE NS N * DFT s efficient for predicting molecular

and material properties.




Modelling approaches and their scales
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Milestones in Theoretical and Computational Chemistry

Classical Mechanics
Isaac Newton
(1687)

Density Functional Theory

Kohn-Sham-Hohenberg
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Free Energy Perturbation
Zwanzig

w»

CPMD
Car-Parrinello

MC/Sojvation
Jorggnsen

Reaction mechanism discovery
Accelerated molecular dynamics

CQuantum computing

Machine learning

hybrid Artificial inteligance
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Potential energy surface (PES)
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A three-dimensional perspective (a) and contour map (b) for a model chemical
reaction. The solid line i the reaction path. [Adapted from G. M. Maggiora and R. E. Christ-
offerson, in Transifon Siates of Blochemical Processes, ed. R. D. Gandour and R. L. Schowen

{ew York: Plesum, 1978).

Wi ag

PES is a geometric hypersurface on which the
potential energy of the molecular system is plotted
as a function of the coordinates representing the
molecular geometry.

Quantum mechanics can be used for calculating
PESs.

PES is important to understand the molecular
structure and properties.

Thus, calculating the PES of the molecular systems is
a primary step in computational chemistry.
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Potential energy surface (PES)
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A three-dimensional perspective (a) and contour map (b) for a model chemical
reaction. The solid line is the reaction path. [Adapted from G. M. Maggiors and R. E. Christ-
offerson, in Transition Sates of Biochemical Processes, ed, R. D. Gandour and R. L. Schowen
(Mew York: Plenum, 1978). |
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Potential energy/kcal per mol
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Potential energy surface (PES)
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Potential energy surface (PES)
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Optimization Techniques — locate a local minimum

Multivariate Grid Search

* Choose a starting point A.

Energy &p

* Foreachvariable q,, q,, . . ., q, evaluate the molecular potential
energy U at the two points surrounding A (as determined by the
grid size).

* Select the new point for which U is a minimum, and repeat above
steps until the local minimum is found.

Univariate search

Second Edition

Choose a starting point A.

Introduction to
Computational
Chemistry

Minimize U(q) for each variable q;, q, . . ., g, in turn.

Repeat the cycle as necessary.

Frank Jensen Neither of the two methods makes use of derivatives (gradients and hessians).

SIWILEY
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Energy

Second Edition

Introduction to
Computational
Chemistry

Frank Jensen

HIWILEY

Optimization Techniques — locate a local minimum
First-Order Methods

. Steepest descent

. Conjugate gradients

' Second-Order Methods
Second-order methods use not only the gradient but also the hessian to
locate @ minimum.

Newton—Raphson
There are a number of variations on the Newton—Raphson method, many
of which aim to eliminate the need to calculate the full hessian.

Block diagonal Newton—Raphson.

. Quasi-Newton—Raphson.

- The Fletcher—Powell algorithm.
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ORCA 6.0 TUTORIALS

C, SEARCH

FIRST STEPS

How to cite

Installing ORCA,

Hello water! Your first ORCA calculation
Input and Output

Running a calculation in parallel
Graphical User Interfaces (GUI)

Solving common issues

WORKFLOWS
Compound Jobs

Extrapolation Technigues

PROPERTIES

Single point energies
Geometry optimization
Wibrational frequencies

Tharmadvhariire

Geometry optimization

Basic usage

Optimizing a geometry means finding the geometry that minimizes the total energy for a given method.

Mow, suppose you want to calculate the optimized geometry of the amino acid alanine for a given method. The
first step is to have some kind of guess geometry. You can use Avogadro 2 to draw its structure and run the

Open Babel optimizer (via Extensions — Open Babel —: Optimize Geometry )to get a reasonable atom
arrangement:
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'PBE D4 DEF2

* Xyz @ 1
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SVP OPT

. 83911
61442
. 01669
. 20895
. 37884
08414
- 17285
87124
. 81191
26720
. 38551
- 33980
. 84559

[ R e e i R Y T = R e N Y Y = S

. 76325
. 72014
. 56167
. 36984
. 85803
. 66192
. 95192
. 87150
. 81288
. 92983
. 57618
. 77979
. BBA55
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.31843
. 25875
49748
93753
17685
.27362
.45211
. 85988
. 48492
. 48485
. 71869
66176
. 28096

Input file

PBE: The Perdew—Burke—Ernzerhof generalized
gradient approximation (GGA).

D4: The Grimme D4 dispersion correction.

DEF2-SVP: Thebasis set (a split-valence polarized
basis set by Ahlrichs et al.).

OPT: Perform a geometry optimization.

Xyz: The coordinate format (Cartesian coordinates in
Angstroms).

0: The total charge of the molecule (neutral).
1: The spin multiplicity (singlet; all electrons paired).

Atomic Coordinates e
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ORCA 6.0
TUTORIALS

Q. SEARCH

FIRST STEPS
How to cite
Installing ORCA

Hello water! Your first ORCA
calculation

Input and Output
Running a calculation in parallel
Graphical User Interfaces (GUI)

Solving common issues

WORKFLOWS

Compound Jobs

Vibrational frequencies

After performing a Geometry optimization, you might want to compute the vibrational frequency of your system and plot

normal mode animations. Here is how to do it, using the acetic acid as an example:

Figure: Molecular structure of acetic acid.
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Frequencies

In order to first compute the frequencies, e.q.

!B3LYP D4 DEF2-SVP FREQ

* XYZ 0 1

(@]

* L © © L T I

.81589
.30690
.42809
.26914
.64631
.16587
.51380
.16801

. 51571
. 49327
.56713
.51520
. 14518
.68279
.07303
. 064625

using DFT and the B3LYP functional use:

.02512
.06114
. 28060
.06962
. 75104
.21470
.21899
.13143

VIBRATIONAL FREQUENCIES

Scaling factor for frequencies
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.00
.00
.00
.00
.00
.00

82.
424,
544,
593.

29
53
40
63

cmxkk—1
cmxkx—1
cmkk—1
cmkk—1
cmxkk—1
cmkk—1
cmkk—1
cmxkk—1
cmkk—1
cmkk—1

1.000000000

(already applied!)



Correlation energy

1

Correlation energy is usually defined as the difference in energy between a higher level theory method, such as

ORCA 50 tUtDriEIS MP2 or CCSD, and the reference Hartree-Fock (HF). It is an important amount of the exact total energy that
has major implications for prediction of properties or energy differences.

C, SEARCH _ . . )

In ORCA, there are several methods implemented that compute or take this part into account, here we will
discuss three of them: Maller—Plesset perturbation theory (MP2); double-hybrid DFT (DHDF) and coupled

FIRST STEPS cluster (CC), using the singlet-triplet gap of methylene as a benchmark [Shavit1985]:

How to cite

Installing ORCA,

Hello water! Your first ORCA calculation
Input and Output

Running a calculation in parallel

Using Avogadro as a GUI

Solving commaon issues
g AErs = 9.12 + 0.2 kcal/mol

WORKFLOWS
This is an unusual example where the ground triplet state is more stable than the singlet. Here the HF theory

Compound Jobs fails badly, and the the experimental properties were measured to good accuracy.

Extrapolation Technigues

https://www.faccts.de/docs/orca/5.0/tutorials/prop/corren.html
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Correlation
energy

Electron
correlation
Fy
] "Exact"

Full CI result
CISDTQ
CISDT
CISD
CIS

SZ DZP TZP QZP 5ZP 6ZP ...

» Basis set

In order to calculate total energies with a “chemical accuracy” of
~4kJ/mol (~1 kcal/mol), it is necessary to use a sophisticated methods
for including electron correlation and large basis sets.

Comparison of the adiabatic singlet-triplet gap

for methylene, calculated using the different

correlated methods that were discussed. The

energies are in kcal/mol.

Method

HF

B3LYP

MP2

SCS-MP2

RI-B2PLYP
RI-DSD-PBEB95
DLPNO-CCSD
DLPNO-CCSD(T)
DLPNO-CCSD(T)-CBS

Experiment [Shavit1985]

AETS

2825
11.74
14.24
7.92
11.73
11.63
10.54
9.70
9.26

9.12

Error
19.13
262
511
-1.22
2.60
2.50
142
0.58

0.14
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